Wikicars, a place to share your automotive knowledge

.

Jump to: navigation, search

Active or adaptive suspension is an automotive technology that controls the vertical movement of the wheels via an onboard system rather than the movement being determined entirely by the surface on which the car is driving. The system therefore virtually eliminates body roll and pitch variation in many driving situations including cornering, accelerating, and braking.

This technology allows car manufacturers to achieve a higher degree of both ride quality and car handling by keeping the tires perpendicular to the road in corners, allowing for much higher levels of grip and control.

An onboard computer detects body movement from sensors located throughout the vehicle and, using data calculated by opportune control techniques, controls the action of the suspension.

Methods

Active suspensions can be generally divided into two main classes: pure active suspensions and semi-active suspensions.

Active

Active suspensions, the first to be introduced, use separate actuators which can exert an independent force on the suspension to improve the riding characteristics. The drawbacks of this design (at least today) are high cost, added complication/mass of the apparatus needed for its operation, and the need for rather frequent maintenance and repairs on some implementations. Maintenance can also be problematic, since only a factory-authorized dealer will have the tools and mechanics who know how to work on the system and, some issues, can be difficult to diagnose reliably.

Citroen's Active Wheel incorporates an in-wheel electrical suspension motor that controls torque distribution, traction, turning maneuvers, pitch, roll and suspension damping for that wheel, in addition to an in-wheel electric traction motor.<ref>Template:Citation/core{{#if:|}}</ref> <ref>Template:Citation/core{{#if:|}}</ref>

Hydraulic actuated

Hydraulically actuated suspensions are controlled with the use of hydraulic servomechanisms. The hydraulic pressure to the servos is supplied by a high pressure radial piston hydraulic pump. Sensors continually monitor body movement and vehicle ride level, constantly supplying the computer with new data.

As the computer receives and processes data, it operates the hydraulic servos, mounted beside each wheel. Almost instantly, the servo regulated suspension generates counter forces to body lean, dive, and squat during various driving maneuvers.

In practice, the system has always incorporated the desirable self-levelling suspension and height adjustable suspension features, with the latter now tied to vehicle speed for improved aerodynamic performance, as the vehicle lowers itself at high speed.

Colin Chapman - the inventor and automotive engineer who founded Lotus Cars and the Lotus Formula One racing team - developed the original concept of computer management of hydraulic suspension in the 1980s, as a means to improve cornering in racing cars. Lotus developed a version of its 1985 Excel model with electro-hydraulic active suspension, but this was never offered to the public.

Computer Active Technology Suspension (CATS) co-ordinates the best possible balance between ride and handling by analysing road conditions and making up to 3,000 adjustments every second to the suspension settings via electronically controlled dampers.

Electromagnetic recuperative

This type of active suspension uses linear electromagnetic motors attached to each wheel independently allowing for extremely fast response and allowing for regeneration of power used through utilizing the motors as generators. This comes close to surmounting the issues with hydraulic systems with their slow response times and high power consumption. It has only recently come to light as a proof of concept model from the Bose company, the founder of which has been working on exotic suspensions for many years while he worked as an MIT professor. Electronically controlled active suspension system (ECASS) technology was patented by the University of Texas Center for Electromechanics in the 1990s and has been developed by L-3 Electronic Systems for use on military vehicles. The ECASS-equipped HMMWV exceeded the performance specifications for all performance evaluations in terms of absorbed power to the vehicle operator, stability and handling.

Semi-active

Semi-active systems can only change the viscous damping coefficient of the shock absorber, and do not add energy to the suspension system. Though limited in their intervention (for example, the control force can never have different direction than that of the current speed of the suspension), semi-active suspensions are less expensive to design and consume far less energy. In recent times, research in semi-active suspensions has continued to advance with respect to their capabilities, narrowing the gap between semi-active and fully active suspension systems.

Solenoid/valve actuated

This type is the most economic and basic type of semi-active suspensions. They consist of a solenoid valve which alters the flow of the hydraulic medium inside the shock absorber, therefore changing the dampening characteristics of the suspension setup. The solenoids are wired to the controlling computer, which sends them commands depending on the control algorithm (usually the so called "Sky-Hook" technique).

Magneto rheological damper

Another fairly recently-developed method incorporates magneto rheological dampers with a brand name MagneRide. It was initially developed by Delphi Corporation for GM and was standard, as many other new technologies, for Cadillac Seville STS (from model 2002), and on some other GM models from 2003. This was an upgrade for semi-active systems ("automatic road-sensing suspensions") used in upscale GM vehicles for decades, and it allows, together with faster modern computers, changing the stiffness of all wheel suspensions independently on every road inch on highway speed. These dampers are finding increased usage in the USA and already leases to some foreign brands, mostly in more expensive vehicles. In this system, being in development for 25 years, the damper fluid contains metallic particles. Through the onboard computer, the dampers' compliance characteristics are controlled by an electromagnet. Essentially, increasing the current flow into the damper raises the compression/rebound rates, while a decrease softens the effect of the dampers. Information from wheel sensors (about suspension extension), steering, acceleration sensors and some others is used to calculate the optimized stiffness. Very fast reaction of the total system allows, for instance, make softer passing by a single wheel above a bump or a rock on the road.

Some production vehicles with active and semiactive suspension

  • Nye, Doug. History of the Grand Prix Car: 1966-91. Hazleton Publishing, 1992. ISBN 0905138945
  • 1986, Electronics Developed for Lotus Active Suspension Technology[1]

External links

Wikimedia Commons has media related to: